
zeppelin-solidity Documentation
Release 1.0.0

Zeppelin

February 16, 2017

Smart Contracts

1 Getting Started 3
1.1 Truffle Beta Support . 3

2 Ownable 5
2.1 Ownable() . 5
2.2 modifier onlyOwner() . 5
2.3 transfer(address newOwner) onlyOwner . 5

3 Killable 7
3.1 kill() onlyOwner . 7

4 Claimable 9
4.1 transfer(address newOwner) onlyOwner . 9
4.2 modifier onlyPendingOwner . 9
4.3 claimOwnership() onlyPendingOwner . 9

5 Migrations 11
5.1 upgrade(address new_address) onlyOwner . 11
5.2 setCompleted(uint completed) onlyOwner** . 11

6 SafeMath 13
6.1 assert(bool assertion) internal . 13
6.2 safeMul(uint a, uint b) internal returns (uint) . 13
6.3 safeSub(uint a, uint b) internal returns (uint) . 13
6.4 safeAdd(uint a, uint b) internal returns (uint) . 13

7 LimitBalance 15
7.1 LimitBalance(unit _limit) . 15
7.2 modifier limitedPayable() . 15

8 PullPayment 17
8.1 asyncSend(address dest, uint amount) internal . 17
8.2 withdrawPayments() . 17

9 StandardToken 19
9.1 approve(address _spender, uint _value) returns (bool success) . 19
9.2 allowance(address _owner, address _spender) constant returns (uint remaining) 19
9.3 balanceOf(address _owner) constant returns (uint balance) . 19
9.4 transferFrom(address _from, address _to, uint _value) returns (bool success) 19

i

9.5 function transfer(address _to, uint _value) returns (bool success) . 19

10 BasicToken 21
10.1 balanceOf(address _owner) constant returns (uint balance) . 21
10.2 function transfer(address _to, uint _value) returns (bool success) . 21

11 CrowdsaleToken 23
11.1 createTokens(address recipient) payable . 23
11.2 getPrice() constant returns (uint result) . 23

12 Bounty 25

13 Common Contract Security Patterns 27

14 Developer Resources 29

15 The MIT License (MIT) 31

ii

zeppelin-solidity Documentation, Release 1.0.0

Zeppelin is a library for writing secure Smart Contracts on Ethereum.

With Zeppelin, you can build distributed applications, protocols and organizations:

• using Common Contract Security Patterns

• in the Solidity language.

The code is open-source, and available on github.

Smart Contracts 1

https://solidity.readthedocs.io/en/develop/
https://github.com/OpenZeppelin/zeppelin-solidity

zeppelin-solidity Documentation, Release 1.0.0

2 Smart Contracts

CHAPTER 1

Getting Started

Zeppelin integrates with Truffle, an Ethereum development environment. Please install Truffle and initialize your
project with truffle init:

npm install -g truffle
mkdir myproject && cd myproject
truffle init

To install the Zeppelin library, run:

npm i zeppelin-solidity

After that, you’ll get all the library’s contracts in the contracts/zeppelin folder. You can use the contracts in the library
like so:

import "./zeppelin/Ownable.sol";

contract MyContract is Ownable {
...

}

NOTE: The current distribution channel is npm, which is not ideal. We’re looking into providing a better
tool for code distribution , and ideas are welcome.

Truffle Beta Support

We also support Truffle Beta npm integration. If you’re using Truffle Beta, the contracts in node_modules will be
enough, so feel free to delete the copies at your contracts folder. If you’re using Truffle Beta, you can use Zeppelin
contracts like so:

import "zeppelin-solidity/contracts/Ownable.sol";

contract MyContract is Ownable {
...

}

For more info see the Truffle Beta package management tutorial.

3

https://github.com/ConsenSys/truffle/
https://github.com/OpenZeppelin/zeppelin-solidity/issues/13/
https://github.com/OpenZeppelin/zeppelin-solidity/issues/13/
http://truffleframework.com/tutorials/package-management/

zeppelin-solidity Documentation, Release 1.0.0

4 Chapter 1. Getting Started

CHAPTER 2

Ownable

Base contract with an owner.

Ownable()

Sets the address of the creator of the contract as the owner.

modifier onlyOwner()

Prevents function from running if it is called by anyone other than the owner.

transfer(address newOwner) onlyOwner

Transfers ownership of the contract to the passed address.

5

zeppelin-solidity Documentation, Release 1.0.0

6 Chapter 2. Ownable

CHAPTER 3

Killable

Base contract that can be killed by owner.

Inherits from contract Ownable.

kill() onlyOwner

Destroys the contract and sends funds back to the owner.

7

zeppelin-solidity Documentation, Release 1.0.0

8 Chapter 3. Killable

CHAPTER 4

Claimable

Extension for the Ownable contract, where the ownership needs to be claimed

transfer(address newOwner) onlyOwner

Sets the passed address as the pending owner.

modifier onlyPendingOwner

Function only runs if called by pending owner.

claimOwnership() onlyPendingOwner

Completes transfer of ownership by setting pending owner as the new owner.

9

zeppelin-solidity Documentation, Release 1.0.0

10 Chapter 4. Claimable

CHAPTER 5

Migrations

Base contract that allows for a new instance of itself to be created at a different address.

Inherits from contract Ownable.

upgrade(address new_address) onlyOwner

Creates a new instance of the contract at the passed address.

setCompleted(uint completed) onlyOwner**

Sets the last time that a migration was completed.

11

zeppelin-solidity Documentation, Release 1.0.0

12 Chapter 5. Migrations

CHAPTER 6

SafeMath

Provides functions of mathematical operations with safety checks.

assert(bool assertion) internal

Throws an error if the passed result is false. Used in this contract by checking mathematical expressions.

safeMul(uint a, uint b) internal returns (uint)

Multiplies two unisgned integers. Asserts that dividing the product by the non-zero multiplicand results in the multi-
plier.

safeSub(uint a, uint b) internal returns (uint)

Checks that b is not greater than a before subtracting.

safeAdd(uint a, uint b) internal returns (uint)

Checks that the result is greater than both a and b.

13

zeppelin-solidity Documentation, Release 1.0.0

14 Chapter 6. SafeMath

CHAPTER 7

LimitBalance

Base contract that provides mechanism for limiting the amount of funds a contract can hold.

LimitBalance(unit _limit)

Constructor takes an unisgned integer and sets it as the limit of funds this contract can hold.

modifier limitedPayable()

Throws an error if this contract’s balance is already above the limit.

15

zeppelin-solidity Documentation, Release 1.0.0

16 Chapter 7. LimitBalance

CHAPTER 8

PullPayment

Base contract supporting async send for pull payments. Inherit from this contract and use asyncSend instead of send.

asyncSend(address dest, uint amount) internal

Adds sent amount to available balance that payee can pull from this contract, called by payer.

withdrawPayments()

Sends designated balance to payee calling the contract. Throws error if designated balance is 0, if contract does not
hold enough funds ot pay the payee, or if the send transaction is not successful.

17

zeppelin-solidity Documentation, Release 1.0.0

18 Chapter 8. PullPayment

CHAPTER 9

StandardToken

Based on code by FirstBlood: Link FirstBloodToken.sol

Inherits from contract SafeMath. Implementation of abstract contract ERC20 (see
https://github.com/ethereum/EIPs/issues/20)

approve(address _spender, uint _value) returns (bool success)

Sets the amount of the sender’s token balance that the passed address is approved to use.

allowance(address _owner, address _spender) constant returns (uint
remaining)

Returns the approved amount of the owner’s balance that the spender can use.

balanceOf(address _owner) constant returns (uint balance)

Returns the token balance of the passed address.

transferFrom(address _from, address _to, uint _value) returns (bool
success)

Transfers tokens from an account that the sender is approved to transfer from. Amount must not be greater than the
approved amount or the account’s balance.

function transfer(address _to, uint _value) returns (bool success)

Transfers tokens from sender’s account. Amount must not be greater than sender’s balance.

19

https://github.com/Firstbloodio/token/blob/master/smart_contract/FirstBloodToken.sol/
https://github.com/ethereum/EIPs/issues/20

zeppelin-solidity Documentation, Release 1.0.0

20 Chapter 9. StandardToken

CHAPTER 10

BasicToken

Simpler version of StandardToken, with no allowances

balanceOf(address _owner) constant returns (uint balance)

Returns the token balance of the passed address.

function transfer(address _to, uint _value) returns (bool success)

Transfers tokens from sender’s account. Amount must not be greater than sender’s balance.

21

zeppelin-solidity Documentation, Release 1.0.0

22 Chapter 10. BasicToken

CHAPTER 11

CrowdsaleToken

Simple ERC20 Token example, with crowdsale token creation.

Inherits from contract StandardToken.

createTokens(address recipient) payable

Creates tokens based on message value and credits to the recipient.

getPrice() constant returns (uint result)

Returns the amount of tokens per 1 ether.

23

zeppelin-solidity Documentation, Release 1.0.0

24 Chapter 11. CrowdsaleToken

CHAPTER 12

Bounty

To create a bounty for your contract, inherit from the base Bounty contract and provide an implementation for
‘deployContract()‘ returning the new contract address.:

import {Bounty, Target} from "./zeppelin/Bounty.sol";
import "./YourContract.sol";

contract YourBounty is Bounty {
function deployContract() internal returns(address) {
return new YourContract()

}
}

Next, implement invariant logic into your smart contract. Your main contract should inherit from the Target class and
implement the checkInvariant method. This is a function that should check everything your contract assumes to be
true all the time. If this function returns false, it means your contract was broken in some way and is in an inconsistent
state. This is what security researchers will try to acomplish when trying to get the bounty.

At contracts/YourContract.sol:

import {Bounty, Target} from "./zeppelin/Bounty.sol";
contract YourContract is Target {

function checkInvariant() returns(bool) {
// Implement your logic to make sure that none of the invariants are broken.

}
}

Next, deploy your bounty contract along with your main contract to the network.

At ‘migrations/2_deploy_contracts.js‘:

module.exports = function(deployer) {
deployer.deploy(YourContract);
deployer.deploy(YourBounty);

};

Next, add a reward to the bounty contract

After deploying the contract, send reward funds into the bounty contract.

From ‘truffle console‘:

bounty = YourBounty.deployed();
address = 0xb9f68f96cde3b895cc9f6b14b856081b41cb96f1; // your account address
reward = 5; // reward to pay to a researcher who breaks your contract

25

zeppelin-solidity Documentation, Release 1.0.0

web3.eth.sendTransaction({
from: address,
to: bounty.address,
value: web3.toWei(reward, "ether")

})

If researchers break the contract, they can claim their reward.

For each researcher who wants to hack the contract and claims the reward, refer to our Test for the detail.

Finally, if you manage to protect your contract from security researchers, you can reclaim the bounty funds. To end
the bounty, kill the contract so that all the rewards go back to the owner.:

bounty.kill();

26 Chapter 12. Bounty

https://github.com/OpenZeppelin/zeppelin-solidity/blob/master/test/Bounty.js/

CHAPTER 13

Common Contract Security Patterns

Zeppelin smart contracts are developed using industry standard contract security patterns and best practices. To learn
more, please see Onward with Ethereum Smart Contract Security.

27

https://medium.com/zeppelin-blog/onward-with-ethereum-smart-contract-security-97a827e47702#.ybvzeyz0k/

zeppelin-solidity Documentation, Release 1.0.0

28 Chapter 13. Common Contract Security Patterns

CHAPTER 14

Developer Resources

Building a distributed application, protocol or organization with Zeppelin?

Ask for help and follow progress at: https://zeppelin-slackin.herokuapp.com/

Interested in contributing to Zeppelin?

• Framework proposal and roadmap: https://medium.com/zeppelin-blog/zeppelin-framework-proposal-and-
development-roadmap-fdfa9a3a32ab#.iain47pak

• Issue tracker: https://github.com/OpenZeppelin/zeppelin-solidity/issues

• Contribution guidelines: https://github.com/OpenZeppelin/zeppelin-solidity/blob/master/CONTRIBUTING.md

29

https://zeppelin-slackin.herokuapp.com/
https://medium.com/zeppelin-blog/zeppelin-framework-proposal-and-development-roadmap-fdfa9a3a32ab#.iain47pak
https://medium.com/zeppelin-blog/zeppelin-framework-proposal-and-development-roadmap-fdfa9a3a32ab#.iain47pak
https://github.com/OpenZeppelin/zeppelin-solidity/issues
https://github.com/OpenZeppelin/zeppelin-solidity/blob/master/CONTRIBUTING.md

zeppelin-solidity Documentation, Release 1.0.0

30 Chapter 14. Developer Resources

CHAPTER 15

The MIT License (MIT)

Copyright (c) 2016 Smart Contract Solutions, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

31

	Getting Started
	Truffle Beta Support

	Ownable
	Ownable()
	modifier onlyOwner()
	transfer(address newOwner) onlyOwner

	Killable
	kill() onlyOwner

	Claimable
	transfer(address newOwner) onlyOwner
	modifier onlyPendingOwner
	claimOwnership() onlyPendingOwner

	Migrations
	upgrade(address new_address) onlyOwner
	setCompleted(uint completed) onlyOwner**

	SafeMath
	assert(bool assertion) internal
	safeMul(uint a, uint b) internal returns (uint)
	safeSub(uint a, uint b) internal returns (uint)
	safeAdd(uint a, uint b) internal returns (uint)

	LimitBalance
	LimitBalance(unit _limit)
	modifier limitedPayable()

	PullPayment
	asyncSend(address dest, uint amount) internal
	withdrawPayments()

	StandardToken
	approve(address _spender, uint _value) returns (bool success)
	allowance(address _owner, address _spender) constant returns (uint remaining)
	balanceOf(address _owner) constant returns (uint balance)
	transferFrom(address _from, address _to, uint _value) returns (bool success)
	function transfer(address _to, uint _value) returns (bool success)

	BasicToken
	balanceOf(address _owner) constant returns (uint balance)
	function transfer(address _to, uint _value) returns (bool success)

	CrowdsaleToken
	createTokens(address recipient) payable
	getPrice() constant returns (uint result)

	Bounty
	Common Contract Security Patterns
	Developer Resources
	The MIT License (MIT)

